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A COMPACT FORMULA FOR ROTATIONS AS SPIN MATRIX POLYNOMIALS

I Why bother? Consider the rotation matrix for 2-spinors,

eia(n̂·~σ) = I cos a+ i(n̂ · ~σ) sin a ,

so the generic SU(2) (SO(3)) group element multiplication is

eia(n̂·~σ)eib(m̂·~σ)

= I(cos a cos b−n̂·m̂ sin a sin b)+i(n̂ sin a cos b+m̂ sin b cos a−n̂×m̂ sin a sin b)·~σ

= I cos c+ i(k̂ · ~σ) sin c = eic(k̂·~σ).

Manifestly, cos c = cos a cos b − n̂ · m̂ sin a sin b , the spherical law of

cosines. Given c, ;

eick̂·~σ = exp
(
i c
sin c(n̂ sin a cos b+ m̂ sin b cos a− n̂× m̂ sin a sin b) · ~σ

)
XComposition law of finite rotations —J W Gibbs, 1884.



I For general representations of SU(2), ([Ja, Jb] = iεabcJc), the ro-

tation matrices eiθ(n̂·J) are (2j+1)×(2j+1) dimensional for either in-

tegral spin, j = 0, 1, 2, 3, · · · , or half-integral spin, j = 1
2,

3
2,

5
2, · · · ,

and depend on the rotation angle θ around the unit vector axis n̂.

The third component of the matrix triplet J in standard convention

is the diagonal matrix J3 = diag(j, j − 1, j − 2, · · · ,1− j,−j).

By the Cayley–Hamilton theorem, the expansion of this exponential

in powers of n̂ ·J may be recast as a finite sum of powers of n̂ ·J ,

the highest power being of order 2j. (These polynomials of Lie

generators are in the universal enveloping algebra of su(2).)

We just saw j = 1/2, so J = σ/2,

ei(θ/2)(n̂·σ) = I2 cos θ/2 + i(n̂ · σ) sin θ/2 ,

and we also know the (vector) Rodrigues’ rotation formula (Euler

1770) for the triplet, j = 1, so J3 = diag(1,0,−1),

eiθ(n̂·J) = I3 + i(n̂ · J) sin θ + (n̂ · J)2(cos θ − 1)

= I3 + (2in̂ · J sin(θ/2)) cos(θ/2) + 1
2(2in̂ · J sin(θ/2))2 .

but ... # what about higher representations?



People have computed low-lying representations since the mid 30s

(Wigner 1931, Lehrer-Ilamed 1964,van Wageningen 1964, Weinberg

1964, Weber & Williams 1965, Zemach 1965, Torruella 1975) — but

have failed to find a closed expression for arbitrary representations.

We found one:



eiθ(n̂·J) =
2j∑
k=0

ck(θ)

k!

(
2in̂ · J sin

θ

2

)k
,

where, with use of the floor function,

ck(θ) = (cos(θ/2))ε Trunc
bj−k/2c

(
(arcsin

√
x/
√
x)k

(
√

1− x)ε

)
,

with x = sin2(θ/2) and

ε(j − k/2) = 2j − k − 2bj − k/2c =
1− (−1)2j−k

2
,

a binary parity variable: 0 for even 2j − k, and 1 for odd 2j − k.

~ The effective variable 2j−k is the descending order of this poly-

nomial.

# Truncn is a Taylor polynomial in x, i.e., it denotes truncating the

infinite series of its arguments to O(xn),

Trunc
n

 ∞∑
m=0

amx
m

 ≡ n∑
m=0

amx
m .



For the quartet, j = 3/2,

eiθ(n̂·J) = I4 cos(θ/2)
(
1 + 1

2 sin2(θ/2)
)

+ (2in̂ · J sin(θ/2))
(
1 + 1

6 sin2(θ/2)
)

+
1

2!

(
2in̂ · J sin(θ/2)

)2
cos(θ/2) +

1

3!

(
2in̂ · J sin(θ/2)

)3
.

For the quintet, j = 2,

eiθ(n̂·J) = I5 + (2in̂ · J sin(θ/2)) cos(θ/2)
(
1 + 2

3 sin2(θ/2)
)

+
1

2!
(2in̂ · J sin(θ/2))2

(
1 + 1

3 sin2(θ/2)
)

+
1

3!
(2in̂ · J sin(θ/2))3 cos(θ/2) +

1

4!
(2in̂ · J sin(θ/2))4 .



For the sextet, j = 5/2,

eiθ(n̂·J) = I6 cos(θ/2)
(
1 + 1

2 sin2(θ/2) + 3
8 sin4(θ/2)

)
+ (2in̂ · J sin(θ/2))

(
1 + 1

6 sin2(θ/2) + 3
40 sin4(θ/2)

)
+

1

2!
(2in̂ · J sin(θ/2))2 cos(θ/2)

(
1 + 5

6 sin2(θ/2)
)

+
1

3!
(2in̂ · J sin(θ/2))3

(
1 + 1

2 sin2(θ/2)
)

+
1

4!
(2in̂ · J sin(θ/2))4 cos(θ/2) +

1

5!
(2in̂ · J sin(θ/2))5 .

For spin j = 5,

eiθ(n̂·J) = I11

+ (2in̂ · J sin(θ/2)) cos(θ/2)
(
1 + 2

3
sin2(θ/2) + 8

15
sin4(θ/2) + 16

35
sin6(θ/2) + 128

315
sin8(θ/2)

)
+ 1

2!
(2in̂ · J sin(θ/2))2

(
1 + 1

3
sin2(θ/2) + 8

45
sin4(θ/2) + 4

35
sin6(θ/2) + 128

1575
sin8(θ/2)

)
+ 1

3!
(2in̂ · J sin(θ/2))3 cos(θ/2)

(
1 + sin2(θ/2) + 14

15
sin4(θ/2) + 164

189
sin6(θ/2)

)
+ 1

4!
(2in̂ · J sin(θ/2))4

(
1 + 2

3
sin2(θ/2) + 7

15
sin4(θ/2) + 328

945
sin6(θ/2)

)
+ 1

5!
(2in̂ · J sin(θ/2))5 cos(θ/2)

(
1 + 4

3
sin2(θ/2) + 13

9
sin4(θ/2)

)
+ 1

6!
(2in̂ · J sin(θ/2))6

(
1 + sin2(θ/2) + 13

15
sin4(θ/2)

)
+ 1

7!
(2in̂ · J sin(θ/2))7 cos(θ/2)

(
1 + 5

3
sin2(θ/2)

)
+ 1

8!
(2in̂ · J sin(θ/2))8

(
1 + 4

3
sin2(θ/2)

)
+ 1

9!
(2in̂ · J sin(θ/2))9 cos(θ/2)

+ 1
10!

(2in̂ · J sin(θ/2))10 ,



etc.

~ The trace of each exponential (2j + 1)×(2j + 1) matrix is the

character of this spin j representation of SU(2): the Gegenbauer

and also the 2nd kind Chebyshev polynomial,

C1
2j(cos(θ/2)) = U2j(cos(θ/2)) = sin((2j + 1)θ/2)/ sin(θ/2).

; Each term in the Taylor polynomials Truncn... is positive semi-

definite—no oscillations!

Taking k derivatives of this expansion with respect to θ and evaluating

at θ = 0 =⇒ the (in̂ · J)k term in the series is selected with unit

coefficient— and all other terms must vanish. It is also necessary

that the last term be of order 2j.

I All terms, for integral j are actually periodic functions θ, i.e. they

can be recast in trigonometric functions of θ, and are thus periodic in

2π. By contrast, for half-integral spin j, all coefficients cannot (they

are only trigonometric functions of θ/2), and and thus have period

4π, instead. Fermions and bosons flip relative signs at π.



¶ For a given j, the matrix coefficients of the terms of sin2j(θ/2) and

cos(θ/2) sin2j−1(θ/2) in the expansion, polynomials of order (n̂ ·J)2j

and (n̂ · J)2j−1 respectively, must vanish for all eigenvalues of J3

except the extremal ones, ±j. That is, they are proportional to

the characteristic polynomial of J3[2j−1] and hence of n̂ · J[2j−1].

Constraining these coefficients to zero, which amounts to projecting

out these extremal eigenvalues, necessarily reduces the expansion of

eiθn̂·J[j] to that of eiθn̂·J[j−1].

� The alternating binary parities ε, even (0), or odd (1—which inserts

a factor cos(θ/2) in the coefficients and effectively in the denominator

of the truncated series), interleave for a given j; and their location

shifts by one for a given k, going from integral to half-integral spins.

; When the large j limit is considered, the resulting expression

would be expected to resemble the expansion of a scalar exponential,

as the Cayley–Hamilton theorem applied to higher-order terms pro-

vides dwindling corrections—provided the requisite periodicities be

respected!

#In general, the coefficients (including the sin θ/2s) would then be

periodicized monomials (θ/2)k with the suitable periodicity.



H The leading coefficient (to the identity) of the expansion, c0, is

always just 1, for even ε, so then for all integral spins, large and small.

In striking contrast, for odd ε, large half-integral spins j, the leading

term tends to

I2j+1 sgn
(
cos(θ/2)

)
,

a square waveform with the required periodicity of 4π. It agrees with

the integral spin in [−π, π], but flips sign outside this interval.

� Similarly, the second term in the expansion linear in the Lie algebra

generators, for large integral spins has odd bimodal parity ε and tends

to

in̂ · J
(
θ − 2πb θ2π −

1
2c
)
,

a sawtooth forced to maintain periodicity in 2π.

	 By contrast, for large half-integral spins, even bimodal parity, the

limiting triangular waveform can be more symmetric, as the slope of

the linear function must reverse at the boundary of [−π, π],

in̂ · J sgn
(
cos(θ/2)

) (
θ − 2πb θ2π −

1
2c
)
.



−2π ≤ θ ≤ 2π, for spins j = 137/2 and j = 69.

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

c0 versus θ

-6 -4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

1.5

c1 sin(θ/2) versus θ



-6 -4 -2 2 4 6

-1

1

2

c2 sin2(θ/2) versus θ

-6 -4 -2 2 4 6

-3

-2

-1

1

2

3

c3 sin3(θ/2) versus θ



t There is a plethora of derivations, by now. They normally rely
on the Lagrange–Sylvester polynomial expansion of analytic matrix
functions with Vandermonde matrix inversion and/or the Cayley–
Hamilton theorem re-expressed through central factorial polynomials.

Specifically,

f (M) =
N∑
i=1

f (λi)
N∏
j=1
j 6=i

M− λj
λi − λj

=
N−1∑
m=0

Cm [f ] Mm ,

f (λk) =
N−1∑
m=0

Cm [f ] (λk)m ≡ V [M]km Cm [f ] ,

where the N ×N Vandermonde matrix of M nondegenerate eigen-
values (; invertible) is

V [M] =


1 λ1 λ2

1 · · · λN−1
1

1 λ2 λ2
2 · · · λN−1

2... ... ... . . . ...

1 λN λ2
N · · · λN−1

N

 .

Hence

Cm [f ] = V [M]−1
mk f (λk) ,





In practice, we evaluated

eiθ(n̂·J) = eiθj
n̂ · J − j + 1

1

n̂ · J − j + 2

2
· · ·
n̂ · J + j

2j

+ eiθ(j−1) n̂ · J − j
−1

n̂ · J − j + 2

1
· · ·
n̂ · J + j

2j − 1
+ · · · · · · · · · · · · · · · · · ·

+ eiθ(1−j) n̂ · J − j
1− 2j

n̂ · J − j + 1

2− 2j
· · ·
n̂ · J + j

1

+ e−iθj
n̂ · J − j
−2j

n̂ · J − j + 1

1− 2j
· · ·
n̂ · J + j − 1

−1
.

Also see T Curtright & T van Kortryk, JPhys A48 (2015) 025202
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